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Abstract—The Multipath TCP (MPTCP) is able to explore
network resources with multi-connected devices. Altogether with
MPTCP, the RFC 6897 defines an API that adds the freedom
for applications to manage the MPTCP subflows by giving
them the power to control important aspects of the MPTCP
implementation’s behavior (e.g. to open and close subflows as
they may wish). This paper presents an initial implementation
of the RFC 6897 so that MPTCP subflows can be added by the
application. To demonstrate the benefits of such mechanism, we
build an HTTP application that detects elephant flows and breaks
these into mice flows using the API. The tests were done using a
cubic network topology and showed that the power given to the
application to break elephant flows into mice flow decreased the
Flow Completion Time (FCT) due to the spreading of subflows
in the network.

Keywords—Multipath Routing, MPTCP, RFC 6897, Applica-
tion Awareness, Elephant Flows Management.

I. INTRODUCTION

Today, end-host devices usually have multiple network
interfaces mainly in datacenter networks, allowing the si-
multaneous utilization of such interfaces through applications
and protocols, which may efficiently exploit these resources.
This kind of mechanism can assist the traffic management,
enabling the bandwidth control usage and more efficient flows
distribution. The applications that are capable of using these
alternatives to better distribute the flows can be referred to as
aware applications [1], [2], given its scientific characteristic
concerning what is happening inside the network.

Typically, an aware application is based on some mecha-
nisms that work with rules to define the operating mode of an
application. In some cases, we may have socket modifications
at the user level to allow the implementation of these rules
[2].

Utilizing the very same concept, this article presents the
usage of an Application Programming Interface (API) that
was developed based on the RFC 6897 [3] aiming at enabling
aware interaction between applications and network, taking
the advantage of the resources offered by the Multipath TCP
(MPTCP) protocol [4], [5]. By using this TCP protocol’s
extension, we have the possibility to generate rules in the
application so that it can open various flows over one or several
network interfaces [6].

In this paper, we are interested in empowering the applica-
tion for management of elephant traffic. Typically, the flows
in the network are classified in two types:

• Mice Flows: Concise flows, which have small amount of
data;

• Elephant Flows: Large and lasting flows, which have high
amount of data.

The importance of detecting elephant flows is due to the fact
that they promptly and continuously fill network buffers, in-
troducing non-trivial traffic congestion, triggering a significant
delay and harming other applications and services.

Some studies performed upon datacenter traffic character-
istics [7] show that about 90% of flows are classified as
mice flows. These flows, as previously mentioned, are quickly
distributed and do not impact in the network’s performance.
However, the remaining 10% are considered to be elephant
flows carrying the biggest part of existent data, requiring fast
and effective management and processing to avoid delays,
which may compromise applications. The same studies show
that 90% of the transfered data in a datacenter are within this
10% of the flows [8].

The treatment of elephant flows is associated to their
detection, which is not an easy task, regarding their variable
size which requires the utilization of an index factor. This
index factor appoints if the flow is elephant or if should not
be parametrized through the network traffic study.

Nowadays, there are some solutions that deal with the ele-
phant flows problem. They are based on the idea of detection
and treatment in the core of the network using controllers that
schedule flows through different paths, as can be seen in [9].
Other solutions change the behavior of switches according to
the reports [9], [10], change the behavior of protocols, as in
[11], [12] or use an hybrid form such as in [13].

The RFC 6897 [3] suggests the creation of some extensions
in the basic socket interface (API) of the TCP protocol
enabling applications to add or remove subflows in an MPTCP
connection. The MPTCP is an extension of the TCP protocol
defined by IETF [6], allowing a TCP connection, which is by
default single path, to work as a multiple path connection.

Based on these works’ reviews and identifying the main
difficulties which still permeate the management of elephant
flows, this paper presents an initial implementation of the
RFC 6897 and tests it through an application capable of
managing such flows without any modifications in the TCP/IP
architecture. The application was implemented being aware of
the RFC 6897 API so that it could add new MPTCP subflows
as required. By doing this, the application could improve its
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final throughput which was evaluated using a typical data
center network topology.

The article is organized as follows: Section II presents some
basic concepts. The implementation and the evaluation of
the use case are detailed in Section III. Finally, the article’s
conclusion is presented in Section IV.

II. FUNDAMENTAL CONCEPTS

A. Application Awareness

The system’s information awareness concept is firstly in-
troduced in [1] as a mechanism to understand activities of a
group which, eventually, presents a context to accomplish its
own activity. This awareness helps to manage the collabora-
tive working process among different systems, for example
between a given application and the network.

When the concept addresses information, this science is
started through a basic identification of the applications ex-
isting in the network. When the network understands the
application’s existence, the next step is to understand the
communication state and flow established by these applica-
tions. Through this science, the network can understand how
the application protocols work, thus enabling better network
utilization. Therefore, it is possible to inject intelligence inside
the user space applications throughout rules which will allow
a better network management by these applications.

In our case, we used the concept of application awareness
through a rule which provides the elephant flows identification
and breaks them into mice flows achieving better flow rate and
better usage of the resources available in the network.

B. Elephant Flows

In the literature, the definition of elephant flows differs
according to the focus of the study. Therefore, we identified
three definitions that normally are utilized to characterize
elephant flows.

Firstly, an specific flow may be considered elephant when
its duration exceeds a certain time range which may significant
delay other simultaneous flows in the same network, as evi-
denced in [12]. Secondly, an specific flow may also be defined
as elephant when its rate (in Mbps) exceeds a certain number
[9]. Finally, an specific flow may be considered elephant when
its quantity of bytes transfered exceeds a defined threshold,
typically 100MB [8], [13]. This last definition is the one
most used and then adopted in this work.

Diverse proposals suggest the creation of mechanisms to
control bandwidth and flow delay, ensuring the quality and
punctuality of the responses to the applications’ users in a
datacenter.

In Casado et. al. [14], the authors describe several items
which are essential in the creation of a solution that may solve
the problem of elephant flows, such as:
a) Utilize distinct queues to divide small flows from the

elephant flows;
b) Utilize distinct paths to route elephant flows;
c) Forward elephant flows to an exclusive network;

d) Transform elephant flows in small flows and scatter these
flows through diverse paths available in the network.

Nowadays, the existent solutions aim to identify and detach
elephant flows from mice flows, however, they normally with-
stand some limitations such as performance decrease when
there are network bottlenecks or collisions. This fact guided
us to transform elephant flows into mice flows and scattering
them through the open subflows, thus adopting the solution d)
listed above.

C. Multipath TCP

The Multipath TCP (MPTCP) is a TCP protocol extension
defined by the IETF in [6], allowing a TCP connection which
is single path by default to work with a connection of multiple
paths, supporting more than one data path of a connection.
The MPTCP breaks the traditional TCP connection splitting
it in various TCP connections referred to as subflows. These
subflows can be spread in the network by using typical routing
mechanisms such as ECMP or more intelligent solutions such
as a Software Defined Networking controller [15].

One of the main advantages of the MPTCP compared to
other solutions such as the SCTP, is the usage of the same
TCP protocol structure to route information. This approach
makes the MPTCP transparent to TCP applications since it
seizes the same socket API of the TCP protocol, as shown in
Figure 1.

MPTCP 
standard socket API 

MPTCP Sender 

Scheduler 

send queue 

Coupled Congestion Control 

TCPn TCP1 send recv 

Application 

Fig. 1. TCP stack with MPTCP support.

The MPTCP uses the TCP three-way handshake process
to perform the necessary transaction which enables its usage.
Basically, the following 3 stages are done by the MPTCP:

• Establish a new MPTCP connection: In this stage, the
sender host checks if the destination supports MPTCP
communication (MP CAPABLE) and generates the key
exchange which will serve as the connection identifier;

• Add subflows in an MPTCP connection: In the event of
needing to add a new subflow (MP JOIN), a new three-
way handshake is performed utilizing the key generated
as the connection identifier;

• Transmit data throughout the MPTCP connection.



D. RFC 6897

On most of operating systems, when an application needs to
establish communication it requests the opening of a socket,
which may be TCP or UDP, by using the universal and
well-known socket API. Then, the operating system maps the
socket to a specific network interface using the parameters
that are shared through the API and utilizes this information
to establish the communication. The RFC 6897 [3] describes
an API that aims to expand this communication through a set
of functions present in the MPTCP protocol.

Table I displays a set of functions implemented in the socket
API to enable MPTCP manipulation through the applications.

TABLE I
OPERATIONS OF THE MPTCP API

Name Get Set Data Type
TCP MULTIPATH ENABLE x x Boolean
TCP MULTIPATH ADD x Addresses List/Ports
TCP MULTIPATH REMOVE x Addresses List/Ports
TCP MULTIPATH SUBFLOWS x Addresses Pair List/Ports
TCP MULTIPATH CONNID x Integer

The options specified in Table I have the following func-
tions:

• TCP MULTIPATH ENABLE: enables or disables
MPTCP;

• TCP MULTIPATH ADD: Connects the MPTCP protocol
to a set of defined local addresses or adds a new set
of local addresses in an existent MPTCP connection. In
practical terms, this option allows the inclusion of new
subflows to an existing MPTCP connection;

• TCP MULTIPATH REMOVE: Removes the local ad-
dress of an MPTCP connection. In practical terms, this
option allows that existing subflows are excluded from
an MPTCP connection;

• TCP MULTIPATH SUBFLOWS: Recovers addresses
pairs currently utilized by MPTCP subflows;

• TCP MULTIPATH CONNID: Returns the local connec-
tion identifier of the current MPTCP connection.

III. IMPLEMENTATION AND EVALUATION

On the architecture’s perspective, the MPTCP protocol may
be seen as a set of TCP connections referred to as subflows
and are grouped and managed through two points in an
MPTCP connection. These subflows are not static and may
be established or terminated during the extent of an MPTCP
connection.

In the existent implementation, the two main structures for
an MPTCP connection control are the subflow’s metasockets
and sockets. The metasocket is the structure which bridges
the main TCP socket and the MPTCP subflow to accomplish
control information exchange among the applications. It also
has pointers required to access the MPTCP internal structures,
including a linked list of the established subflows.

The subflow socket is the internal structure that controls the
inclusion and exclusion of subflows. Consequently, we need

to create an API that accesses this control structure to allow a
complete management of the internal functions. It should be
also possible to dynamically control inclusion and exclusion
of subflows and other functionalities that were shown in Table
I. Then, as a consequence, the subflow socket of this structure
needs to be exposed through the developed API.

Currently, the set of operations available in our API imple-
mentation that expand the socket API inside the kernel are:
TCP_MULTIPATH_ENABLE (to enable/disable the protocol
by the application), TCP_MULTIPATH_CONNID (to obtain
the TCP connection ID) and TCP_MULTIPATH_ADD (to add
a new subflow).

In this regard, we added the interface calls to the MPTCP
protocol inside the socket interface in the Linux kernel, rep-
resented by the functions do tcp setsockopt, concerning data
configuring functions, and do tcp getsockopt, concerning data
extracting functions. Such functions define the socket interface
entry point and are implemented in the file tcp.c located at
net/ipv4 inside the kernel source code. A short excerpt of the
functions is shown in Listing 1.

static int do_tcp_getsockopt(struct sock *sk, int level,
int optima, char __user *optval,

int __user *optlen)
{

case TCP_MULTIPATH_ENABLED:
[...]
case TCP_MULTIPATH_CONNID:
[...]

}

static int do_tcp_setsockopt(struct sock *sk, int level,
int optima, char __user *optval,

int __user *optlen)
{

case TCP_MULTIPATH_ENABLED:
[...]
case TCP_MULTIPATH_ADD:

mptcp_add_subflow(struct sock *sk,
char *num_subflows);

[...]
}

Listing 1. Implemented functions for the MPTCP API extension.

Hence, the initial function call that adds subflows
(TCP_MULTIPATH_ADD) is performed in this entry point,
shown in Figure 2.

  

Kernel Space
standard socket API

User Space

setsockopt()

TCP_MULTIPATH_ADD()

TCPnTCP1
send recv

Application

Fig. 2. Creation of new subflows using the API.



We wrote a function named mptcp add subflow that works
as a wrapper to instantiate the new MPTCP socket when
a TCP MULTIPATH ADD is called by the application.
Note in Listing 1 that this function is called when the
TCP_MULTIPATH_ADD flag is present.

The application must use getsockopt and setsockopt with the
correct parameters for calling the MPTCP API functions. The
application should inform the IP addresses, ports and the type
of path manager. Below, in Listing 2, we show an example of a
small source code used to add a new subflow by an application.
Firstly, it is necessary to get the ID of the MPTCP connection
which is obtained by calling the getsockopt function with
the TCP MULTIPATH CONNID flag enabled. Note that the
structure sockfd is fulfilled with several information, including
the connection ID. This structure is then passed as a parameter
to the setsockopt function with the TCP MULTIPATH ADD
flag enabled.

error = getsockopt(sockfd, IPPROTO_TCP, TCP_MULTIPATH_CONNID,
&sub_sso, optlen);

error = setsockopt(sockfd, IPPROTO_TCP, TCP_MULTIPATH_ADD,
&sub_sso, optlen);

}

Listing 2. Example of adding a new subflow by an userspace application.

To validate the API utilization, we developed an HTTP
application in C language which detects the presence of
MPTCP support and establishes a connection with a web
server requesting a considerably large file, with the intent
of generating a flow which might be monitored. For this
work, a flow is considered elephant if it reaches 100MB
of data transfered. Whilst this flow is being monitored by
the application, a threshold is verified and if the amount of
data transfered reaches 100MB, the application establishes
the creation of a new subflow so that this stream may be
partitioned.

A. Use Case of RFC 6897: Elephant Flows Management

As a use case, we developed an aware application utilizing
the implemented API which possesses the capacity of veri-
fying if a certain flow is elephant. When an elephant flow
is detected, the application requests the inclusion of subflows
according to the need. The algorithm validation is determined
through minimum and maximum values during its operation.
These values are used as threshold parameters to detect an
elephant flow defined from 100MB to 300MB, opening a new
subflow for every 50MB until it reaches the maximum number
of 4 subflows.

The developed application consists of downloading big
archives from a web server by using a pre-established MPTCP
connection to originally control and monitor the flow until
the established threshold value is reached. When the defined
value is achieved, the application can open new subflows
guaranteeing that the original flow is shattered into mice flows.
These mice flows are distributed along the subflows created in
multiple existent paths in the network, as shown in Figure 3.

150 MB 

200 MB 

250 MB 

300 MB 

MP_JOIN (ACK) 

MP_JOIN (SYN+ACK) 

Fig. 3. Subflows Creation.

The application requires a Linux kernel with MPTCP sup-
port. It is essential to remind that for the MPTCP module to
work it is mandatory to control the connections and creation
of subflows through application controlled routines, justifying
the need for implementing the API that we developed.

B. Tests and evaluation

We built the whole environment in a Dell PowerEdge
R420 server with 2 Intel Xeon E5-2430 processors running
with 2.2GHz clock and 48GB of RAM, using the KVM in
a Ubuntu Linux Server v.14.04. Two virtual machines were
instantiated, one for running the client application and one for
running the server, both with Ubuntu Linux Server v. 14.04
and MPTCP support. To construct the network topology, we
used Mikrotik routers virtualized with RouterOS v. 6.34.4 with
ECMP support. The ECMP was chosen because of its flow
distribution strategy, widely utilized in datacenters’ networks
to perform load balancing among different routes.

An advantage obtained by using the MPTCP is the possibil-
ity of doing traffic forwarding through diverse different routes,
concurrently. So, the more paths the network topology has,
the better is the usage of these paths by the MPTCP subflows.
Figure 4 presents the network topology used in our tests.

Fig. 4. Cubic network topology used in the evaluation.

We adopted the cube topology utilized in datacenters’
networks [16] which enables a variety of paths among end
hosts pairs. The adopted topology, although small, enables the
establishment of three disjoined paths in the access routers
primary links. Assuming that for each of these paths there



will be two other possible paths through the secondary links,
we will have a total of six routing paths with the same cost
among the hosts connected to the routers in opposite corners.
This feature allows the creation of a satisfactory environment
for ECMP routing.

The routers that have links with the end hosts are named
access routers: ROUTER 1 and ROUTER 8. The other routers
are named core routers which are: ROUTER 2, ROUTER 3,
ROUTER 4, ROUTER 5, ROUTER 6 and ROUTER 7. The
links between the access routers and core routers were entitled
as primary links and the links which connect the core routers
among themselves are named secondary links.

To evaluate the impact of opening new MPTCP subflows,
we used the HTTP application which was developed utilizing
the API implemented and we calculated the average Flow
Completion Time (FCT) of 10 executions. Due to a limitation
of the MPTCP kernel, the initial number of subflows is 3. So,
the HTTP client application starts running with 3 subflows
opened. Then, as already mentioned, a new subflow is created
for every 50MB after reaching 100MB of data transfered. A
total of 7 subflows is created. In each scenario we performed
three file transfers of different size: 300MB, 600MB and 1GB,
generating the following results.

In Figure 5, we can observe the FCT for the files of 300MB,
600MB and 1GB. When observing the 300MB file, we note
that the FCT decreases until the limit of 5 subflows. However,
when 6 subflows are opened we can observe the beginning of
FCT increase. In the second scenario, with the 600MB file, we
observe a benefit until opening 5 subflows and an stabilization
of the FCT with 6 and 7 subflows. The same happens with the
file of 1GB. Therefore, the overhead created by the MPTCP
having more than 5 subflows negatively impacts the FCT in
these scenarios.
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Fig. 5. Average FCT with different file sizes and number of subflows.

The FCT differs according to the number of open subflows
as well as paths available (joined or disjoined) in the network
topology. Clearly, the more available paths, preferably dis-
joined, the better will be the subflow distribution by the ECMP
in the network. The conclusion with the results of Figure 5 is
that the flow opening has to consider the network topology,

more specifically, the number of available paths. Otherwise,
the overhead caused by the MPTCP may harm the final (FCT)
performance.

By doing this initial evaluation, we could verify that the
most significant throughput occurs when we establish 3 to
4 subflows. Thus, the following tests open at the most 4
subflows.

Two scenarios in the same environment were proposed,
varying the bandwidth occupancy inside the routes and also
the use or non-use of the MPTCP. The CUBIC TCP implemen-
tation was used for the cases without MPTCP. The bandwidth
occupancy (background traffic) was done by creating TCP
traffic with iperf. The links’ bandwidth among the routers was
deliberately configured to 10Mbps so that there would be no
interference in the results, concerning processing bottlenecks
of routers and hosts. The links among routers and hosts were
configured with the same bandwidth (10 Mbps). To each file
transference, 10 executions were performed and the average
values were collected.

In the first scenario, presented in Figure 6, no background
traffic was inserted in the links. As we can observe in the
figure, the FCT is smaller when the application controls the
opening of MPTCP sublfows. As an example, the FCT for
the 600MB file when the MPTCP-aware application is used
is 3 minutes and 56 seconds. The FCT for the same file when
the application does not use the MPTCP is 8 minutes and 56
seconds, a difference of 125%. This same analysis can be done
for 100MB, 300MB and 1GB files.
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Fig. 6. MPTCP-aware application X no MPTCP-aware (no background
traffic).

In the second scenario, with the intent of verifying the
behavior of MPTCP traffic upon sharing bandwidth of a link
with other flows, a TCP traffic was generated, enough to
occupy 50% of the available bandwidth in each of the six paths
used in the test. Furthermore, the same procedure described in
the first scenario was utilized to transfer the files. The collected
results can be verified through the graphic presented in Figure
7, exhibiting a significant aware application FCT benefit which
transfered the 600MB file in 4 minutes and 44 seconds while
the application without MPTCP required 16 minutes and 46
seconds. There is an even better benefit for the file of 1GB



which accounted 7 minutes and 57 seconds for the aware
application against 24 minutes and 46 seconds for the one
without MPTCP-aware support.
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Fig. 7. MPTCP-aware application X no MPTCP-aware (50% bandwidth
occupation).

By doing this evaluation, we verified the advantages of
utilizing the Multipath TCP (MPTCP) protocol as an alter-
native for the creation of aware applications, having as a use
case the treatment of elephant flows. The API implemented
in this work can be largely used by other applications which
desire to control the opening and closing of MPTCP subflows.
Examples include load balancers, map-reduce applications,
multipathing for flow resiliency and several others.

IV. CONCLUSION

In this article, we presented an implementation of the
RFC 6897 as an alternative for empowering the applications
to become aware. The idea behind this is to give to the
applications the capability of managing the MPTCP functions
such as opening and closing subflows based on the application
need.

Therefore, it was fundamental to develop an implementation
of the RFC 6897 on kernel level so that applications use
the MPTCP protocol, specifying when to add and remove
flows, as well as turning the protocol on and off. With this
implementation, the developers and MPTCP protocol users
may find paths to extend their applications whereas using the
existent resources in the protocol with the intent of obtaining
the best results upon its utilization.

The next step of this work is to implement the option for
closing the subflows (TCP MULTIPATH REMOVE) so that
the application cannot only add new subflows but also close
as necessary.
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