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Abstract. In this work we present an architecture for provisioning of connec-
tions in GMPLS optical networks. Such architecture is based on Web services
and allows the establishment of two kinds of connections. The first one is known
as Soft Permanent Connection (SPC) and is triggered by the manager of the op-
tical domain. The SPC connects two network elements belonging to the same
domain. The second one is an end-to-end connection by which a given client
can send data across multiple domains. In this last case the client needs to ne-
gotiate with each domain to verify the availability of resources. We describe
the modules of the architecture and the implementation of the modules that are
responsible for provisioning of connections. Simulations using the GLASS sim-
ulator have been done in order to test our approach.
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1. Introduction

The optical network technology has appeared as a solution for problems like low band-
width and bottlenecks typically found in today’s networks. The international commu-
nity and organizations of network designers such as Internet Engineering Task Force
(IETF), International Telecommunication Union - Telecommunication Standardization
Sector (ITU-T) and the Optical Internet Working Forum (OIF) are creating specifications
in order to define standards to support the development of new solutions related to optical
networks. All these organizations agree that future transmission networks are supposed
to have ten to thousands of Gb of available bandwidth to attend all kinds of applications
requiring faster transmission rates. These networks will likely consist of elements such
as routers, switches, Dense Wavelength Division Multiplexing (DWDM) systems, Add-
Drop Multiplexors (ADMs), photonic cross-connects (PXCs) and optical cross-connects
(OXCs) [Mannie, 2003].

The Generalized Multiprotocol Label Switching (GMPLS) [Mannie, 2003] archi-
tecture is an evolution of MPLS and as such, the protocols defined for the MPLS model
are reused in the GMPLS world by extending them. These extensions provide routing
protocols such as Open Shortest Path First (OSPF) and signaling protocols such as Re-
source Reservation Protocol(RSVP), the capability to support not only switching in the



packet domain (e.g. IP) but also in the time division networks (using Time Division
Multiplexing-TDM), where the switching decision is based on time slots, and optical net-
works where the switching decision is based on wavelengths or physical ports. Looking
to the optical domain, the lightpaths are seen as LSPs (Label Switched Paths) or optical
LSPs (from now on optical LSP and lightpath will be used interchangeably) and because
of technologies like DWDM it is now possible to have a very large number of parallel
links between two directly adjacent nodes (hundreds of wavelengths, or even thousands
of wavelengths if multiple fibers are used).

Although there is a common sense to dynamically provide resources and perform
the routing and signaling functions in the control plane in order to speed the provisioning
of new connections, so far such job has been made typically by the management plane.
An example of that is the ATM network that despite of having Private Network to Node
Interface (PNNI) as its signaling protocol, it is almost unused. So, the question is: will the
GMPLS succeed? We believe that GMPLS will likely be used inside the domains since
some tests have been done and proved its feasibility [Cavazzoni et al., 2003]. Connec-
tions between domains are being deeply discussed through the international community
and they have not reached a consensus yet. The External Network-to-Network Interface
[E-NNI, 2004] is being defined by the OIF and its purpose is to allow the interactions
between different domains by creating an standard interface. However, there is still miss-
ing a routing protocol that satisfies the requirements for routing across multiple optical
domains [Truong et al., 2004].

While international organizations try to find a way towards the standardiza-
tion, a group in Canada known as CANARIE is using another alternative for standards
[Boutaba et al., 2004]. They assume that in the future the user will be responsible for
controlling his lightpath and by means of concatenation of lightpaths such user will be
able to reach any destination. They have developed a testbed network in order to validate
their approach [CANARIE Project, 2004] and showed how simple their idea is. Basically,
they have adopted XML and Web services as the core technologies.

The main objective of Web services is to allow applications to communicate with
other applications outside corporate Intranets in an automatic fashion and without the hu-
man intervention. This is called application-to-application communication. To achieve
this, Web services make use of the Service-Oriented Architecture (SOA). This architec-
ture is the next step of distributed computing, which enables software components includ-
ing application functions, objects and processes from different systems to be exposed as
services.

Although some people argue that we already have some technologies for dis-
tributed computing like the Common Object Request Broker Architecture (CORBA), Mi-
crosoft Distributed Component Object Model (DCOM), Sun Java RMI (Remote Method
Invocation) and others, those technologies adopted a tightly coupled mechanism of a syn-
chronous communication model (request/response) having low interoperability among
them. Furthermore, they are very complex and need heavy investment in infrastructure
and at the same time they do not pass by firewalls.

On the other hand, by using XML standards and Internet protocols - such HTTP,
FTP, SMTP - Web services are naturally loosely coupled asynchronous communication
model and avoid those problems. It makes interoperability easy and allows the develop-
ment of applications with any programming language, any protocol, or any platform by
using such open standards.

In this project we are taking into account the use of Web services to provide inter-
operability between domains and also to provide a high level of flexibility to access the



management system. Inside the domains the GMPLS protocols are running to support
signaling, routing and recovery and protection mechanisms. On the other hand, the rela-
tions between domains are performed by adopting almost the same idea of the CANARIE
project in which each domain advertises its connectivity with neighboring domains.

The goal of this paper is to describe an architecture that allows a manager of
a given domain to create, manage and tear down a Soft Permanent Connection (SPC)
[ASON, 2001]. Also, this paper depicts the details on how a given client leases lightpaths
from multiple domains in order to create an end-to-end connection. These two func-
tions are seen as the first functions to be implemented in an optical network considering
their importance and the demand for automatic provisioning. The architecture we are
proposing intends to manage an optical network as a whole and as such, it is composed
of modules responsible for fault management, admission control, policy-based manage-
ment, grooming and Optical Virtual Private Network (OVPN) management. Specifically
for this paper we shortly introduce the architecture and focus on the provisioning of con-
nections giving details on how the provisioning is performed using our approach. The
architecture has been developed taking into account the implementation of the modules
responsible for the provisioning of the two connections. Simulations are being done using
the GLASS simulator [GLASS Simulator, 2003] which provides an environment with IP
over DWDM optical networks running GMPLS protocols. Such scenario represents a real
GMPLS optical network and it is enough to validate our approach.

The paper is organized as follows. Next section presents some works related to
our project. Section 3 details the architecture and its modules. Section 4 some aspects
about the implementation are briefly described. Finally, Section 5 concludes the paper
and presents some future works.

2. Related Works

The work presented in [Boutaba et al., 2004] considers that users can lease and manage
their own resources (lightpaths). By means of a management system users can create
bandwidth-guaranteed tunnels across multiple domains. The bandwidth resources are re-
ferred as lightpath objects (LPOs) and the management system can concatenate LPOs,
partition, advertise/lease and establish end-to-end LPOs. The architecture presented in
that work is based on the web services technology and is being tested on the Canadian
research network CA*Net4 [CANARIE Project, 2004]. Although the approach is very
promising it does not consider constraints imposed by each domain. The establishment
of end-to-end lightpaths does not take into account domain policies. The work presented
in [Truong et al., 2004] discusses a solution for that problem in order to ensure that man-
agement rules of each domain are enforced. The authors showed a web services-based
architecture to establish end-to-end lightpaths considering policy utilization in admission
and resource reservation control. Our approach is similar to both except that we are using
GMPLS protocols inside the domain and web services between domains. The integration
of the management plane with a GMPLS-based control plane is seen as a very difficult
task. In [Verdi et al., 2004] we presented a policy-based Admission Control responsible
for managing the installation and aggregation of packet-based LSPs within lightpaths (op-
tical LSPs). In that work we defined some policies for performing packet-based grooming
in the border of the optical network domain. Such policies are intended to minimize the
number of LSPs rerouting in the optical domain.



3. Detailing the Architecture

The concepts of management, control and transport planes are defined in the context of
the Automatically Switched Optical Network (ASON) [ASON, 2001] and are the same
for both GMPLS and ASON architectures. Management plane is in charge of performing
management functions for the system as a whole. It also coordinates all the planes taking
into account the Fault, Configuration, Accounting, Performance and Security (FCAPS)
management functional areas. The control plane is responsible for the call control and
connection functions [ASON, 2001]. By means of signaling, calls are negotiated, con-
nections are established/released and faults are notified and may be restored. Finally, the
transport plane performs the bidirectional or unidirectional transfer of user data from one
point to another.

Our architecture takes into account the three layers mentioned above and tries to
keep the independence of each one. In this work we are interested in supporting two
functions (related to the Configuration management area) and evaluate the interactions
between the different planes. The first function is the creation of lightpaths performed
by the domain’s administrator (a.k.a SPC). The second function is performed by clients
that need to cross multiple optical domains. Such client needs to access the Admission
Control and asks for an end-to-end tunnel that satisfies the user traffic requirements. The
Inter-domain Service (IDS) is responsible for contacting other domains in order to verify
the availability of resources in each optical domain. This is necessary because domains
have their own policies and the administrative rules of each domain need to be followed.
Fig. 1 shows the architecture and its modules. In the following, each module and their
interactions are described in details. At the end of this section we show the steps to
perform the two functions mentioned above.
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Figure 1: The Proposed Architecture.

Control Plane Modules:

• RSVP - Resource Reservation Protocol: RSVP is the signaling protocol used
in this project. It is responsible for setting up/tearing down LSPs as required and
carrying faults information to the Connection Controller/Network Management
Interface (CC/NMI). RSVP is notified by some link management protocol (e.g.
LMP) about node and link failures in the transport network. These notifications
are sent to RSVP in the form of events;

• OSPF - Open Shortest Path First: OSPF is a well known link state protocol used
in IP networks and was extended to support GMPLS capabilities. It is responsible



for propagating link state information necessary for routing algorithms to find TE
paths. Usually, OSPF protocol sends link state information to the ingress node that
is in charge of calculating TE routes. In our case, the OSPF module sends such
information to the Resource Manager module located in the management plane;

• NEA - Network Element Agent: This module is located in the network elements
in order to apply policies, configure the OXC taking any action related to the net-
work element. Specifically for this work, the NEA is responsible for performing
the crossconnection in each OXC located in the border of the optical domain;

• UNI and NNI (User-to-Network Interface and Network-to-Network Inter-
face: UNI (UNI-C and UNI-N) [UNI, 2001] is the interface used to carry sig-
naling messages between the edge node (client side) and the network ingress node
(server side) in an overlay scenario. The NNI interface is used to carry the same
signaling messages inside the transport network. RSVP has a strong relation with
UNI and NNI since its messages are transfered through such interfaces (in Fig. 1
the lines between RSVP and UNI/NNI are omitted to make it clearer);

• CC/NMI - Connection Controller/Network Management Interface: It is used
by the management plane to access the modules of the control plane. Also, it is
used by the control plane to send events (e.g. fault notifications) to the manage-
ment plane. The NMI interface defines the methods that the management plane
can invoke. Currently, the CC/NMI component is a Remote Method Invocation
(RMI) object offering a simple interface for the management plane.

The modules RSVP, OSPF, UNI and NNI belong to the GLASS Simulator and we
just use them to perform the simulations. The NEA and the CC/NMI are located in the
control plane performing tasks on behalf of the management plane. Note that RSVP and
OSPF modules represent the RSVP-TE and OSPF-TE with extensions to support GMPLS
capabilities.

In the following, the management plane modules are described.

Management Plane Modules:

• Admission Control - AC: It represents the interface whereby administrators and
client networks have access to the management system. It is responsible for receiv-
ing connection requests, verifying pre-defined Service Level Agreements (SLAs),
receiving notifications from the CC/NMI and invoking the Policy Manager, Re-
source Manager and Fault Manager to perform specific management tasks;

• Policy Manager - PM: PM is also known as the Policy Decision Point (PDP)
and is responsible for applying the policies defined to the domain being man-
aged. Policies are stored in a Policy Repository described using XML. In case
of IP/MPLS LSPs grooming, the PM always tries to minimize the quantity of re-
movals that are needed to accommodate an LSP. Considering that LSP removals
are necessary in case of having different classes of flows, the AC is in charge of
interacting with the control plane to send a tear down message for each LP LSP
that needs to be removed. Details of this as well as scenarios and results of testing
the defined policies can be found in [Verdi et al., 2004];

• Fault Manager - FM: It is responsible for performing the fault management. In
case that the NEA is not able or does not have enough information to take ac-
tions when a given event happens in the transport network, the FM is notified to
act and correct the problem. These corrective actions are based on some policies
previously defined by the administrator and try to minimize the impact of a nega-
tive event. FM also keeps a fault information base which stores all the faults that



occurred in a period of time. This is useful to detect points of faults and avoid
dangerous paths;

• Resource Manager - RM: It is responsible for managing the transport network
resources (e.g. lambdas, available bandwidth of lightpaths, points of grooming,
etc.). Constraint-based routing done by the Routing Controller uses the infor-
mation provided by the Resource Manager to find TE paths. Specifically for this
work, the RM is responsible for sending advertisements to the Routing Server (see
below) about the connectivity of the domain with other domains;

• Routing Controller - RC: Basically, the tasks of this module are the same from
the ones described in [ASON, 2001]. It is responsible for finding a TE route for
the establishment of connections inside the optical domain and running Routing
and Wavelength Assignment (RWA) algorithms. It also provides basic information
about the transport network topology for management purposes;

• Inter-domain Service - IDS: This module performs the end-to-end negotiation
across multiple domains. It contacts other domains in order to ask for a resource
(lightpath) and verify the availability for using such resource. This negotiation
can be based on a previously agreed SLA between the domains.

Although each module has its own group of specific functions, they work to-
gether to provide some management functionalities. The information model stored in
the Management Information Base (MIB) has information about connections (optical
LSPs), available resources (e.g. lambdas, bandwidth in each lightpath), points of groom-
ing, clients, backup lightpaths and optical elements. The policy information model stored
in the Policy Repository describes the policies defined to manage the domain. The in-
formation is used for policy-based admission control, policy-based traffic aggregation
(grooming) and policy-based fault treatment.

The Routing Server (RS) does not belong to the management plane as we can see
in Fig. 1. It acts as a centralized routing for all the domains and as such, each domain
sends information about its connectivity with other domains to the Routing Server. It
collects this information and creates a routing table. Note that such routing table refers to
the routing information among domains. Clients that need to create a connection across
multiple domains ask the RS for a route.

The level of information that is published depends on what kind of data the routing
algorithm needs. Information about the internal topology of the domain is not published
since each domain does not want to advertise how its infrastructure is organized. Basi-
cally, information about link cost is enough considering that it is desirable to preserve
confidentiality of each domain [Farrel et al., 2004b]. In this work we are advertising only
the information about connectivity between domains and no internal information is cur-
rently being published.

Below (in Fig. 2), we show the sequence diagram for the SPC connection (per-
formed by the administrator). The information that is necessary to create an optical LSP
is:

• Explicit Route: The IDs of each node belonging to the route;
• Ingress Node and Interface: The MPLS ingress source node and its interface ID;
• Egress Node and Interface: The MPLS egress source node and its interface ID;
• Rate: The bandwidth of the lightpath;
• Level of Protection: 1+1, 1:1, 1:N, no protection. For more details about fault

terminology see [Mannie and Papadimitriou, 2004].

SPC Setup:



ACADM RM PM CC/NMI RSVP

(1) :  

(2) :  

Return :  

(3) :  

Return :  

(4) :  

(5) :  

PATH:  

RESV:  

Return :  

Return :  

Return :  

Figure 2: Soft Permanent Connection Setup.

1. ADM sends an SPC request to the AC by using a web interface. The Administrator
gives the request all the necessary information to set up the SPC;

2. Upon receiving the SPC request, AC asks RM to verify if there are available re-
sources (lambdas) in the given route;

3. If there are resources, AC notifies the PM in order to apply the defined policies on
the request using the explicit route;

4. Considering that the request is accepted, AC requests CC/NMI to start setting up
the lightpath;

5. CC/NMI sends the parameters to the RSVP which in turn is responsible for sig-
naling the optical LSP. This is done by sending PATHs and RESVs messages.

After finishing the connection setup, a notification is sent to AC which is in charge
of updating the MIB. Note that the Routing Controller is not being used since the explicit
route is given by the manager. Further on we will be considering the use of the RC to
calculate the route taking into account Traffic Engineering constraints.

On the other hand, to create an end-to-end connection for a client it is necessary
to interact with other domains. There has been an intensive discussion on how to cre-
ate an end-to-end connection in a multi-domain scenario. A Path Computation Element
(PCE), defined under the IETF umbrella, is an entity that is capable of computing a net-
work path or route based on a network graph, and applying computational constraints
[Farrel et al., 2004a]. In our work, the Routing Server (RS) acts as a centralized PCE
providing the routes across multiple domains. Within the domains the Routing Controller
(RC) acts as a local PCE providing local routes from an ingress node to an egress node
in the same domain. This modularization gives more flexibility to independently extend
each module. In the present architecture, each domain advertises its connectivity to the
Routing Server (steps 1 and 2 in Fig. 3). Afterwards, each client that needs to create an
end-to-end connection queries the Routing Server to find the route (steps 3 and 4 in Fig.
3). The Xindice is responsible for storing the XML files (see Section 4).

In this work we are considering that the domains belong to the same administra-
tive instance. In this case, the centralized Routing Server makes sense since it is a trustful
entity inside the administrative domain. However, in case of having different adminis-
trative domains, the centralized solution is not feasible and a distributed approach has
to be used. It consists in flooding the resumed routing information of each domain to
other neighbor domains. The PCE located in each domain is responsible for propagating



and receiving information to and from other domains. A client that needs to create an
end-to-end connection asks the local PCE for finding the end-to-end route.

User ResourceManager RoutingServer Xindice

addDocument(xml) :  

searchRoute(src,dest) :  

1 : Connectivity

2 : Add connectivity

XML stored :  

Confirm advertisement :  

4 : Search(src,dest)

All possible routes :  

findBestRoute() :  

3 : Query(src,dest)

Route :  

Figure 3: Advertisement and Query.

After the client queries for a route in the Routing Server (RS) and lets say that the
route is domain 1 and domain 2, the client needs to send a requisition to AC in order to
ask for the end-to-end connection. Fig. 4 depicts step-by-step how to create an end-to-
end connection across two domains considering that the lightpaths inside the domains are
already created and as such, one of those lightpaths is chosen by applying some policies.
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Figure 4: Inter-domain Connection Setup.

Basically, the client gives the route obtained from the RS and other constraints like
bandwidth, level of protection to the AC (step 1 in Fig. 4). The AC validates the request
and asks the RC to find the egress node(s) (in domain 1) that connect to domain 2 (step 2).
After getting the egress node (s), the RM is invoked to find all the lightpaths between the
ingress node and egress node(s) in domain 1 (step 3). In step 4 of Fig. 4 the PM applies the
defined policies in order to find the most appropriated lightpath to be used (or, eventually,
to create a new one). By doing this, the management system concludes that the resource in
domain 1 is pre-reserved and now it is necessary to forward the request to domain 2. The
AC sends the requisition to the local IDS (step 5) which in turn communicates with the



next IDS (step 6). The domain 2’s IDS forwards the request to AC (step 7). Steps 8, 9 and
10 are the same as 2, 3 and 4. After verifying that there is a resource available and since
domain 2 is the last domain in the route, the crossconnection is done in each boundary
OXC (steps 11 and 12). It means that a given lightpath connecting domain 1 to domain 2
is crossconnected with an internal lightpath of domain 2. There can be a negotiation phase
between IDSs in order to choose the best lightpath to be used between the two domains.
After performing all the necessary configurations in domain 2, the domain’s 2 IDS replies
to the upstream IDS (steps 13, 14 and 15). Steps 16 and 17 are the same as steps 11 and
12 (local boundary crossconnection). Finally, the end-to-end connection is ready and an
identifier of that connection is sent back to the client to be used to send data.

By adopting this model, each domain can have its own policies and the negotiation
between domains can be done through the IDS. The way such negotiation is to be done
is a matter of protocol specification. Domains can freely agree on what kind of attributes
can be negotiated. On the other hand, E-NNI [E-NNI, 2004] signaling depends on the
standardization procedures that takes time for companies to adopt the solution. As a
consequence, we believe that for the mid-time, inter-domain establishment/negotiation of
connections will be based on different solutions. One of these solutions is likely to be
through the Web services technology.

4. Implementation

The proposed architecture has been implemented and tested in order to validate our ap-
proach. Currently the Admission Control, the Policy Manager, the Resource Manager
(partially) and the Routing Server are implemented. Also, the interaction of the AC
with the CC/NMI to set up lightpaths is ready. For this article, we assumed that the
inter-domain negotiation is done since the Inter-domain Service is being currently imple-
mented. The modules are being developed in Java and some free tools are being used to
facilitate the implementation.

4.1. Detailing the Management Plane Implementation

The web interface is based on the JSP technology running on the Apache Tomcat container
5.0.18 [Apache Tomcat, 2004] and the web service module is created using the Apache
AXIS 1.1 [Apache AXIS, 2004]. The management plane modules as well as the CC/NMI
are remote objects developed using the Java RMI technology.

The AC module is composed of small components as can be seen in Fig. 5. The
client application shown in the right side of Fig. 5 represents all the web services appli-
cations made up using the Web Services Description Language (WSDL) provided by the
AC. The JSP module offers a web interface to human users and also translates incoming
requests into XML-based Simple Object Access Protocol (SOAP) messages that are sent
to the Web Service module. Upon receiving the SOAP message, the Web Service module
forwards the requisition to the AC Engine by using the Sockets API or RMI.

Web Interface

JSP

Web Server

Web Service
SOAP

AC Engine

Socket /
   RMI

Admission Control − AC

Web
Application

ClientSOAP

Web

ADM

User

Figure 5: Admission Control Internal Architecture.

The communication between the Resource Manager and the Routing Server is
done through the XML-based SOAP protocol. A general XML example of the informa-



tion sent from the Resource Manager to the Routing Server to advertise a given connec-
tivity is shown in Fig. 6.

<?xml version="1.0" encoding="UTF-8"?>
<connection>  <!-- Description of connectivity from torres domain to iracema, mosqueiro and riviera -->
     <srcDomain>torres</srcDomain>
     <destDomain>iracema</destDomain>
     <destDomain>mosqueiro</destDomain>
     <destDomain>riviera</destDomain>
</connection>

Figure 6: Advertisement of Connectivities in a Domain.

The XML above was advertised by the torres domain in order to publish its con-
nectivity with other three domains: iracema, mosqueiro and riviera. Each domain adver-
tises its connectivity in the same way.

It is important to point out that the XML of Fig. 6 is very simple and is useful only
to show the connectivity among domains. More information about the links connecting
the domains can be added to the XML. In case of using TE algorithms, some metrics like
link cost and level of protection can be published in order to improve the routing and better
balance the load among domains. Furthermore, some filtered information corresponding
to the connections within the domains can also be published. For example, the information
may be limited to Forwarding Adjacencies (FAs) across other domains, or the information
may be aggregated or abstracted to preserve confidentiality [Farrel et al., 2004b].

The Xindice [Xindice Project, 2004] is used as the XML database to store the
XML data both in the Routing Server and locally in each domain. The access to the MIB
as well as the XML handling is done by using SAX/DOM/XPath tools. To simulate an
optical network with IP/MPLS clients we have used the GLASS Simulator from NIST
[GLASS Simulator, 2003]. GLASS is a discrete network event simulator for GMPLS-
based Optical Internet and by using it, we created typical scenarios with IP over DWDM
(see Section 4.2 for details).

The AC can be accessed either by a JSP web page or by a web service client
application. Below (Fig. 7), an excerpt of the WSDL of the AC Web service is showed.

<?xml version="1.0" encoding="UTF-8"?>
<wsdl:definitions targetNamespace="urn:http://www.dca.fee.unicamp.br">
     <wsdl:message name="createLightpathResponse">
          <wsdl:part name="createLightpathReturn" type="xsd:string"/>  <!-- Return Confirmation -->
     </wsdl:message>
     <wsdl:message name="createLightpathRequest">
          <wsdl:part name="in0" type="tns1:ArrayOf_xsd_string"/>  <!-- Explicit Route -->
          <wsdl:part name="in1" type="xsd:string"/>  <!-- Ingress Node -->
          <wsdl:part name="in2" type="xsd:int"/>  <!-- Ingress Interface -->
          <wsdl:part name="in3" type="xsd:string"/>  <!-- Egress Node -->
          <wsdl:part name="in4" type="xsd:int"/>  <!-- Egress Interface -->
          <wsdl:part name="in5" type="xsd:int"/>  <!-- Bandwidth -->
          <wsdl:part name="in6" type="xsd:int"/>  <!-- Level of Protection-->
    </wsdl:message>
    . . . 
    <wsdl:service name="ACService">
         <wsdl:port binding="impl:ACSoapBinding" name="AC">
              <wsdlsoap:address location="http://riviera:8080/axis/services/AC"/>
         </wsdl:port>
    </wsdl:service>
</wsdl:definitions>

Figure 7: WSDL for the AC Web Service.

Fig. 8 shows the web page by which the manager creates an SPC. Note that all
the necessary attributes listed in Section 3 are collected through this interface. The data



collected in the web page showed in Fig. 8 are based on the topology depicted in Fig. 11.
The explicit route is represented by the node identifiers belonging to the connection. The
bandwidth is 1 Gb/s. The client ingress and egress nodes as well as the client ingress and
egress interfaces are necessary to create the tunnel by which data is to be sent. The level
of protection in this example is 0 that means no protection.

The web page to create an end-to-end connection is quite similar to the one showed
in Fig. 8 and will not be depicted for sake of space.

Figure 8: Web Page to create an SPC.

We are currently working on the Inter-domain Service. The IDS is being imple-
mented as a Web service and will extend the work developed in [Pedatella et al., 2003].
In that work the authors created an end-to-end Bandwidth Broker for MPLS networks.
We are defining the protocol based on the mentioned work and adapting it to support op-
tical attributes. The IDS and the Routing Server are developed using the Web services
technology. Since they are accessed from different domains, the XML-human readable
standard and the SOAP over HTTP are seen as a very promising combination for current
and future distributed system applications.

4.2. GLASS Simulator Details

GLASS (GMPLS Lightwave Agile Switching Simulator) is a discrete event simulator for
GMPLS-optical Internet developed in Java and runs over the Scalable Simulation Frame-
work Network (SSFNet) [SSFNet Simulator, 2003]. An important point of GLASS is that
its source code is open and free allowing a very deep research on how the simulation and
the protocols work. Furthermore, changes and adaptations in the simulator can be done
taking into account specific requirements of our project.

The simulator implements the main GMPLS protocols such as RSVP and CR-
LDP responsible for signaling LSPs, and OSPF responsible for routing. Note that all
these protocols have the appropriate extensions to support Generalized MPLS. Since the
simulator is a starting point towards new generation networks (NGN), currently it does
not implement the Link Management Protocol (LMP) responsible for link correlation,
fault detection and isolation. GLASS also has diverse example implementations of failure
propagation and recovery protocols that are not IP based (pure optical signaling). More-
over, it has RWA support with specific algorithms such as the ShortestPathDistance for
routing and BestFit for wavelength assignment.

The multiple-domain scenario is simulated by running a GLASS simulator in-
stance in different machines (PC Linux running Slackware distribution). Each instance
of it represents a different domain. The communication between domains is implemented



using the Sockets API and to fully validate the scenario we are sending data across the
domains after installing and end-to-end connection.

It is important to highlight that the GLASS simulator was developed to run in a sin-
gle machine without interacting with other machines running other instances of GLASS.
This kind of interaction is not supported by the normal distribution of GLASS from NIST.
The communication between two different instances of the simulator done through sock-
ets was added by our group to support the multiple-domain scenario. First of all, we had
to give the notion of end-to-end normal LSP signaling. For this paper, we assumed that
there is a permanent connection between the domains. Such connection is represented by
lightpaths that interconnect two domains. There can be many lightpaths between any two
domains. Fig. 9 shows a scenario with one lightpath between domains 1 and 2.

Physical Link

IP/MPLS NetworkIP/MPLS Network

LSR A
LSR B LSR C LSR D LSR E

lightpath

normal LSP (packet-based)

Optical Domain 1 Optical Domain 2

lightpath A
lightpath B lightpath C

An instance of GLASS An instance of GLASS

optical
end-to-end tunnel

Crossconnection is done here

OXC 3OXC 2

eNNI_U eNNI_D

Figure 9: Multi-domain scenario with GLASS.

We can see in Fig. 9 that there are two optical domains (1 and 2). Furthermore, in
each domain there is a lightpath connecting an ingress OXC to an egress OXC (lightpaths
A and C). These two lightpaths are SPCs and were set up by the manager of the optical
domain. The lightpath B connects domain 1 to domain 2. In order to signal an end-to-
end normal LSP from LSR A to LSR E (for example), the PATH message transparently
needs to go through domains 1 and 2 as if LSR B and C were peers. To implement this
end-to-end signaling, two new modules were added to GLASS (see Fig. 9), eNNI U (E-
NNI Upstream) and eNNI D (E-NNI Downstream), both defined in the context of the
OIForum [E-NNI, 2004]. However, in our project theses two modules do not implement
the abstract messages defined in the OIForum. Such messages are being specified to
support the signaling between domains (Switched Connection) and it is a working in
progress in the Forum.

In our project, the eNNI U module is responsible for receiving the PATH message
from the RSVP module (step 1 in Fig. 10) and forwarding it (through sockets) to the
eNNI D module of the next downstream domain (step 3 in Fig. 10). Before forwarding
the message, the eNNI U module opens the explicit route to find out the next domain to
send the PATH message (step 2). Then, the parameters belonging to the PATH message
that are necessary to continue the signaling in the next domain are sent to the eNNI D
module, which in turn is responsible for gathering all the parameters and mounting a new
PATH message using the received parameters (step 4). Finally, the message is sent to the
RSVP module to be forwarded across the domain (step 5).

The TrafficParam object of the RSVP protocol was modified to carry the explicit
route representing the end-to-end connection 1. Also, the TrafficParam object carries the

1The explicit route is formed by an identifier of each domain.
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Figure 10: End-to-End Signaling implemented in the GLASS Simulator.

identifier of the tunnel to be used in each domain. This tunnel identifier is used by the
RSVP protocol in order for it to know in which lightpath the PATH message is to be sent.

Below (in Fig. 11), we show the topology currently used in the simulations. The
topology is the same for all the domains. Note that the topology is quite simple since
the purpose here is to validate our management architecture taking into account the pro-
visioning of connections. Scenarios that require more nodes with more routes are being
tested, mainly the ones related to failures and recovery.

Figure 11: Topology of a single domain.

5. Conclusion and Future Works

The architecture presented in this paper is a starting point of a project whose main objec-
tive is to develop an integrated infrastructure to manage GMPLS-based optical networks.
We describe some basic modules of the control and management planes illustrating some
interactions among the modules when the administrator sets up an SPC and when an user
asks for an end-to-end connection. Although we have adopted the same idea of a PCE
for end-to-end path computation, in our project there is a centralized module (Routing
Server) responsible for end-to-end path computation among multiple domains and a local
module (Routing Controller) in each domain responsible for the local routing.

The implementation of the architecture has showed that the modules we have been
defining are feasible and the integration of different technologies seems to be very useful
in the context of GMPLS optical networks management. By using the Web Services
technology to provide the administrator and the user the access to the management system
and also to integrate the interactions among domains, we are going towards new ways
of developing web-based management solutions. Not only are the research community
willing to adopt XML-based standards but also many consortiums and companies are
driving the development for the convergence and adoption of XML-based integration.

In the context of this project there are some issues to be taken into account further.
The fault notification, fault handling and the utilization of policies for creating different
levels of protection/recovery are being defined and tested. The E-NNI abstract messages
(the ones related to provisioning of connections) as defined by the OIForum are to be
implemented in order to compare the solution presented in this paper with the signaling
using the E-NNI interfaces. The distributed approach considering different administrative
domains is being implemented. Finally, some performance issues in using Web services
are being analized by our group.
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